A quantization of Sylvester's law of inertia

Kenny De Commer VUB (Brussels)

(joint work in progress with S. Moore)

November 23 2020 Quantum Groups Seminar

Overview

Setting

Sylvester's law of inertia

The semiclassical picture

Statement of the main results

Setting

Real algebraic space \boldsymbol{X}

(Liberation, q-deformation, ...) \bigvee $(xy = yx, q \rightarrow 1, ...)$

NC *-algebra $\mathcal{O}(\mathbb{X})$ + Spectral conditions

Representation category \bigvee Forgetful functor

 W^* – category **X**.

Self-adjoint matrices

Fix $N \in \mathbb{Z}_{\geqslant 1}$. We put

$$H(N) = \{ h \in M_N(\mathbb{C}) \mid h^* = h \}.$$

Spectral theorem

Let Λ be the set of multi-sets of N real numbers,

$$\Lambda = \mathbb{R}^N/\mathrm{Sym}(N).$$

Spectral theorem

Let Λ be the set of multi-sets of N real numbers,

$$\Lambda = \mathbb{R}^N / \operatorname{Sym}(N).$$

Theorem (Spectral theorem (Cauchy))

Consider

$$\mathrm{Ad}: H(N) \times U(N) \to H(N), \qquad \mathrm{Ad}_u(h) = u^*hu.$$

Then

$$H(N)/U(N) \stackrel{\lambda}{\cong} \Lambda$$
, $[h] \mapsto eigenvalues \ of \ h$.

Spectral theorem

Let Λ be the set of multi-sets of N real numbers,

$$\Lambda = \mathbb{R}^N / \mathrm{Sym}(N).$$

Theorem (Spectral theorem (Cauchy))

Consider

$$\mathrm{Ad}: H(N) \times U(N) \to H(N), \qquad \mathrm{Ad}_u(h) = u^*hu.$$

Then

$$H(N)/U(N) \stackrel{\lambda}{\cong} \Lambda$$
, $[h] \mapsto eigenvalues \ of \ h$.

Note: we have a natural section

$$\Lambda \to H(N), \qquad \lambda = \{\lambda_1 \geqslant \ldots \geqslant \lambda_N\} \mapsto \operatorname{diag}(\lambda_1, \ldots, \lambda_N).$$

Sylvester's law of inertia Sylvester's law of inertia

Let Sign be the set of multi-sets of N signs,

$$Sign = \{-1, 0, 1\}^{N} / Sym(N).$$

We can identify Sign with partitions $N = N_0 + N_+ + N_-$.

Sylvester's law of inertia Sylvester's law of inertia

Let Sign be the set of multi-sets of N signs,

$$Sign = \{-1, 0, 1\}^{N} / Sym(N).$$

We can identify Sign with partitions $N = N_0 + N_+ + N_-$.

Theorem (Sylvester's law of inertia)

Consider

$$\mathrm{Ad}: H(N) \times GL(N,\mathbb{C}) \to H(N), \qquad \mathrm{Ad}_x(h) = x^*hx.$$

Then

$$H(N)/GL(N,\mathbb{C})\stackrel{\varsigma}{\cong} \mathrm{Sign}, \qquad [h] \mapsto \mathit{signs} \ \mathit{of} \ \mathit{eigenvalues} \ \mathit{of} \ \mathit{h}.$$

Conjugation by the triangular subgroup

Let T(N) be the uppertriangular matrices with positive diagonal

$$T(N) = \{t \mid t_{ii} > 0 \text{ and } t_{ij} = 0 \text{ for } i > j\}.$$

Then we have the Gauss decomposition

$$U(N) \times T(N) \cong GL(N, \mathbb{C}), \qquad (u, t) \mapsto ut.$$

Conjugation by the triangular subgroup

Let T(N) be the uppertriangular matrices with positive diagonal

$$T(N) = \{t \mid t_{ii} > 0 \text{ and } t_{ij} = 0 \text{ for } i > j\}.$$

Then we have the Gauss decomposition

$$U(N) \times T(N) \cong GL(N, \mathbb{C}), \qquad (u, t) \mapsto ut.$$

Let S be the set of shapes

$$S = \{S \in H(N) \mid Se_k = u_k e_{\sigma(k)} \text{ with } |u_k|^2 = |u_k|\}.$$

Conjugation by the triangular subgroup

Let T(N) be the uppertriangular matrices with positive diagonal

$$T(N) = \{t \mid t_{ii} > 0 \text{ and } t_{ij} = 0 \text{ for } i > j\}.$$

Then we have the Gauss decomposition

$$U(N) \times T(N) \cong GL(N, \mathbb{C}), \qquad (u, t) \mapsto ut.$$

Let S be the set of shapes

$$S = \{S \in H(N) \mid Se_k = u_k e_{\sigma(k)} \text{ with } |u_k|^2 = |u_k|\}.$$

Theorem (Elsner '79, Gohberg-Goldberg '82)

Consider

$$Ad: H(N) \times T(N) \rightarrow H(N), \qquad Ad_t(h) = t^*ht.$$

$$S \stackrel{\rho}{\cong} H(N)/T(N), \qquad S \mapsto [S].$$

Intersection of orbits

Let
$$C_h=\mathrm{Ad}_{U(N)}(h)\cap\mathrm{Ad}_{\mathcal{T}(N)}(h)$$
, and put $\widehat{H}(N)=\{C_h\}.$

Intersection of orbits

Let
$$C_h=\mathrm{Ad}_{U(N)}(h)\cap\mathrm{Ad}_{\mathcal{T}(N)}(h),$$
 and put $\widehat{H}(N)=\{C_h\}.$

Theorem

The C_h are connected, and we have an isomorphism

Example

The set $\widehat{H}(2)$ has the following representatives h:

- ► Signature (0,0): $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
- Signature $(0,\pm 1)$: $\begin{pmatrix} \pm \lambda & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & \pm \lambda \end{pmatrix}$,
- $\qquad \qquad \textbf{Signature } (\pm 1, \pm 1) \colon \begin{pmatrix} \pm \lambda_1 & 0 \\ 0 & \pm \lambda_2 \end{pmatrix} \text{,}$
- Signature $(\pm 1, \mp 1)$: $\begin{pmatrix} \pm \lambda_1 & 0 \\ 0 & \mp \lambda_2 \end{pmatrix}$, $\begin{pmatrix} 0 & \bar{u}\lambda \\ u\lambda & \delta \end{pmatrix}$

Visual representation

Matrices
$$\begin{pmatrix} a & c \\ c & t-a \end{pmatrix}$$
 with $t \in \mathbb{R}$ fixed and $a, c \in \mathbb{R}$:

Poisson manifolds

Definition

M is a Poisson manifold if we have a Lie bracket

$$\{-,-\}: C^{\infty}(M)\times C^{\infty}(M)\to C^{\infty}(M)$$

with

$$\{f,-\}\in \mathrm{Der}(C^\infty(M)), \qquad \forall f\in C^\infty(M).$$

Hence $\{f, -\}$ gives a vector field X_f with $X_{\{f,g\}} = [X_f, X_g]$.

Poisson manifolds

Definition

M is a Poisson manifold if we have a Lie bracket

$$\{-,-\}:C^\infty(M)\times C^\infty(M)\to C^\infty(M)$$

with

$$\{f, -\} \in \operatorname{Der}(C^{\infty}(M)), \quad \forall f \in C^{\infty}(M).$$

Hence $\{f, -\}$ gives a vector field X_f with $X_{\{f,g\}} = [X_f, X_g]$.

Definition

The symplectic leaves of $(M, \{-, -\})$ are the leaves of the foliation associated to the involutive distribution \mathscr{P} with

$$\mathscr{P}_m = \{ (X_f)_m \mid f \in C^{\infty}(M) \}.$$

H(N) as Poisson manifold

If $(M, \{-, -\})$ is Poisson, we have a bivector field

$$\mathscr{X} \in \Lambda^2 TM$$
, $\{f,g\}(m) = (df_m \otimes dg_m, \mathscr{X}_m)$.

The semiclassical picture H(N) as Poisson manifold

If $(M, \{-, -\})$ is Poisson, we have a bivector field

$$\mathscr{X} \in \Lambda^2 TM$$
, $\{f,g\}(m) = (df_m \otimes dg_m, \mathscr{X}_m)$.

Theorem (Karolinksy '95, Lu-Yakimov '08)

Let

$$r = \sum_{i} e_{ii} \otimes e_{ii} + 2 \sum_{i < j} e_{ij} \otimes e_{ji}, \quad r' = \sum_{i} e_{ii} \otimes e_{ii} + 2 \sum_{i < j} e_{ji} \otimes e_{ij}$$

Then H(N) is a Poisson manifold through the bivector field

$$i\mathfrak{X}_h = r'(h \otimes h) - (h \otimes h)r + (h \otimes 1)r(1 \otimes h) - (1 \otimes h)r'(h \otimes 1)$$

Moreover, $\hat{H}(N)$ is the partition of H(N) into its symplectic leaves.

The semiclassical picture Kontsevich formality

Theorem (Kontsevich formality)

Let $(M, \{-, -\})$ be a Poisson manifold. Then there exists an (essentially unique) associative product * on $C^{\infty}(M)[[h]]$ with

$$f * g = fg + ih\{f,g\} + O(h^2).$$

We call $(C^{\infty}(M)[[h]],*)$ a (formal) deformation quantization.

Braid operator

Let $q_h = e^h \in \mathbb{C}[[h]]$. We have the braid operator

$$\begin{split} \hat{R} &= \sum_{ij} q_h^{-\delta_{ij}} e_{ji} \otimes e_{ij} + (q_h^{-1} - q_h) \sum_{i < j} e_{jj} \otimes e_{ii} \\ &\in \textit{M}_{\textit{N}}(\mathbb{C}[[h]]) \otimes \textit{M}_{\textit{N}}(\mathbb{C}[[h]]). \end{split}$$

It satisfies the braid relation

$$\hat{R}_{12}\hat{R}_{23}\hat{R}_{12} = \hat{R}_{23}\hat{R}_{12}\hat{R}_{23}$$

Definition

Reflection Equation Algebra A_R over $\mathbb{C}[[h]]$:

- ▶ Generators: Z_{ij} for $1 \le i, j \le N$.
- ▶ Relations: with $Z = (Z_{ij}) \in M_N(A_R)$ we ask

$$\hat{R}(1 \otimes Z)\hat{R}(1 \otimes Z) = (1 \otimes Z)\hat{R}(1 \otimes Z)\hat{R}$$

Definition

Reflection Equation Algebra A_R over $\mathbb{C}[[h]]$:

- ▶ Generators: Z_{ij} for $1 \le i, j \le N$.
- ▶ Relations: with $Z = (Z_{ij}) \in M_N(A_R)$ we ask

$$\hat{R}(1 \otimes Z)\hat{R}(1 \otimes Z) = (1 \otimes Z)\hat{R}(1 \otimes Z)\hat{R}$$

Theorem

There exists a deformation quantization for $(H(N), \{-, -\})$ with

$$A_R \hookrightarrow C^{\infty}(H(N))[[h]].$$

Specialisation

Denote $A_R = \mathcal{O}_h(H(N))$. Then we have a $\mathbb{C}[q_h, q_h^{-1}]$ -subalgebra

$$\mathcal{O}_h(H(N)) \supseteq \mathcal{O}_{q_h}(H(N)) = \langle q_h^{\pm 1}, Z_{ij} \rangle.$$

Moreover, for $q \in \mathbb{C} \setminus \{0\}$ we can specialize to a \mathbb{C} -algebra

$$\mathcal{O}_q(H(N)) = \mathcal{O}_{q_h}(H(N))/(q_h - q).$$

Specialisation

Denote $A_R = \mathcal{O}_h(H(N))$. Then we have a $\mathbb{C}[q_h, q_h^{-1}]$ -subalgebra

$$\mathcal{O}_h(H(N)) \supseteq \mathcal{O}_{q_h}(H(N)) = \langle q_h^{\pm 1}, Z_{ij} \rangle.$$

Moreover, for $q \in \mathbb{C} \setminus \{0\}$ we can specialize to a \mathbb{C} -algebra

$$\mathcal{O}_q(H(N)) = \mathcal{O}_{q_h}(H(N))/(q_h - q).$$

Definition

Let 0 < q < 1. We define the *-REA $\mathcal{O}_q(H(N))$ by the *-operation

$$Z^* = Z$$
.

Example: N = 2

For
$$N=2$$
, we have $Z=\begin{pmatrix}z&w\\v&u\end{pmatrix}$ selfadjoint and
$$zw=q^2wz, \qquad zv=q^{-2}vz, \qquad zu=uz,$$

$$vw=wv+(1-q^2)z^2-(1-q^2)uz,$$

$$vu=q^2zv+uv-q^4zv.$$

Statement of the main results Goal and first main result

Goal

Classify the irreducible bounded *-representations of $\mathcal{O}_q(H(N))$.

Statement of the main results Goal and first main result

Goal

Classify the irreducible bounded *-representations of $\mathcal{O}_q(H(N))$.

We have a W*-category

$$\mathbf{H}_q(N) = \{ \text{bounded } *-\text{representations of } \mathcal{O}_q(H(N)) \}.$$

Statement of the main results Goal and first main result

Goal

Classify the irreducible bounded *-representations of $\mathcal{O}_q(H(N))$.

We have a W*-category

$$\mathbf{H}_q(N) = \{ \text{bounded } *-\text{representations of } \mathcal{O}_q(H(N)) \}.$$

Theorem (DC-Moore (2020))

The *-algebra $\mathcal{O}_q(H(N))$ is C^* -faithful and type I:

- Each $C^*(\pi) := \pi(\mathcal{O}_q(H(N)))^{norm\text{-}cl}$ is type I.

Statement of the main results Center of $\mathcal{O}_q(H(N))$

Theorem (Nazarov-Tarasov '94, Pyatov-Saponov '95)

The center
$$\mathscr{Z}(O_q(H(N))) = \mathbb{C}[\sigma_1, \dots, \sigma_N]$$
 with

$$Z^{N} - \sigma_1 Z^{N-1} + \ldots + (-1)\sigma_N = 0.$$

If π is an irreducible bounded *-representation of $\mathcal{O}_q(H(N))$, then

$$\pi(\sigma_k) = \sigma_k^{\pi} \in \mathbb{R}.$$

Statement of the main results Second main result

For $s \in \mathbb{R}^N$ we write $p_s(x) = x^N - s_1 x^{N-1} + \ldots + (-1)s_N$.

Theorem (DC-Moore 2020)

Let $s \in \mathbb{R}^N$. There exists an irreducible *-representation with $s_k = \sigma_k^{\pi}$ if and only if the roots of p_s are of the form

$$\lambda_{\pi} = \{\underbrace{0, \dots, 0}_{N_0}, q^{2\alpha + 2m_1}, \dots, q^{2\alpha + 2m_{N_+}}, -q^{2\beta + 2n_1}, \dots, -q^{2\beta + 2n_{N_-}}\}$$

where $m_i \neq m_j$ and $n_i \neq n_j$ are integers.

Statement of the main results Second main result

For $s \in \mathbb{R}^N$ we write $p_s(x) = x^N - s_1 x^{N-1} + \ldots + (-1)s_N$.

Theorem (DC-Moore 2020)

Let $s \in \mathbb{R}^N$. There exists an irreducible *-representation with $s_k = \sigma_k^{\pi}$ if and only if the roots of p_s are of the form

$$\lambda_{\pi} = \{\underbrace{0, \dots, 0}_{N_{0}}, q^{2\alpha + 2m_{1}}, \dots, q^{2\alpha + 2m_{N_{+}}}, -q^{2\beta + 2n_{1}}, \dots, -q^{2\beta + 2n_{N_{-}}}\}$$

where $m_i \neq m_i$ and $n_i \neq n_i$ are integers.

Definition

We call $(N_0, N_+, N_-, \beta - \alpha + \mathbb{Z})$ the extended signature of π .

Statement of the main results

The quantum algebra of $GL(N, \mathbb{C})$

Definition

The *-algebra $\mathcal{O}_q^{\mathbb{R}}(GL(N,\mathbb{C}))$ is generated by $X_{ij}, X'_{ij}, Y'_{ij}, Y'_{ij}$ with

$$X^* = Y' = Y^{-1}$$
 $Y^* = X' = X^{-1}$

$$\hat{R}X_1X_2 = X_1X_2\hat{R}$$
 $\hat{R}Y_1Y_2 = Y_1Y_2\hat{R}$ $\hat{R}X_1Y_2 = Y_1X_2\hat{R}$

Statement of the main results

The quantum group associated to $GL(N, \mathbb{C})$

We have a W*-category

$$\mathbf{GL}_q(N) = \{ \text{bounded } *-\text{representations of } \mathcal{O}_q^{\mathbb{R}}(\mathit{GL}(N)) \}.$$

Statement of the main results

The quantum group associated to $GL(N, \mathbb{C})$

We have a W*-category

$$\operatorname{\mathsf{GL}}_q(\mathsf{N}) = \{ \text{bounded } *-\text{representations of } \mathcal{O}_q^{\mathbb{R}}(\operatorname{\mathsf{GL}}(\mathsf{N})) \}.$$

As $\mathcal{O}_q^\mathbb{R}(\mathit{GL}(N,\mathbb{C}))$ is a Hopf *-algebra by

$$\Delta(X) = X_1 X_2,$$

we obtain a monoidal W*-category:

$$\operatorname{GL}_q(N,\mathbb{C}) \times \operatorname{GL}_q(N,\mathbb{C}) \to \operatorname{GL}_q(N,\mathbb{C}),$$

 $(\lambda_1, \lambda_2) \mapsto \lambda_1 \lambda_2 = (\lambda_1 \otimes \lambda_2) \circ \Delta.$

Statement of the main results Adjoint action

We have a coaction

$$\mathrm{Ad}_q: \mathcal{O}_q(H(N)) \to \mathcal{O}_q(H(N)) \otimes \mathcal{O}_q^{\mathbb{R}}(GL(N,\mathbb{C})), \qquad Z \mapsto X^*ZX.$$

Statement of the main results Adjoint action

We have a coaction

$$\operatorname{Ad}_q: \mathcal{O}_q(H(N)) \to \mathcal{O}_q(H(N)) \otimes \mathcal{O}_q^{\mathbb{R}}(GL(N,\mathbb{C})), \qquad Z \mapsto X^* Z X.$$

Hence $\mathbf{H}_q(N)$ becomes a module W*-category over $\mathbf{GL}_q(N,\mathbb{C})$ via

$$\operatorname{Ad}: \operatorname{H}_q(\operatorname{N}) \times \operatorname{GL}_q(\operatorname{N}, \mathbb{C}) \to \operatorname{H}_q(\operatorname{N}),$$

$$(\pi, \lambda) \mapsto \mathrm{Ad}_{\lambda}(\pi) = (\pi \otimes \lambda) \circ \mathrm{Ad}_{q}.$$

Statement of the main results The third main result

For
$$\pi_1, \pi_2 \in \mathbf{H}_q(N)$$
, we write

$$\pi_1 \leqslant \pi_2$$
 iff $C^*(\pi_2) \twoheadrightarrow C^*(\pi_1)$.

Statement of the main results The third main result

For $\pi_1, \pi_2 \in \mathbf{H}_q(N)$, we write

$$\pi_1 \leqslant \pi_2$$
 iff $C^*(\pi_2) \twoheadrightarrow C^*(\pi_1)$.

Theorem (Quantized Sylvester's law of inertia)

Two irreducible *-representations π_1, π_2 of $\mathcal{O}_q(H(N))$ have the same extended signature if and only if there is $\lambda \in \mathbf{GL}_q(N,\mathbb{C})$ with

$$\pi_1 \leqslant \mathrm{Ad}_{\lambda}(\pi_2).$$

Statement of the main results A conjecture

Let $\Lambda_q \subseteq \Lambda$ be the multi-sets of the form

$$\lambda = \{\underbrace{0, \dots, 0}_{N_0}, q^{2\alpha + 2m_1}, \dots, q^{2\alpha + 2m_{N_+}}, -q^{2\beta + 2n_1}, \dots, -q^{2\beta + 2n_{N_-}}\}$$

To any irreducible π one can associate a 'generalized shape' $S_\pi.$

Statement of the main results A conjecture

Let $\Lambda_q \subseteq \Lambda$ be the multi-sets of the form

$$\lambda = \{\underbrace{0, \dots, 0}_{N_0}, q^{2\alpha + 2m_1}, \dots, q^{2\alpha + 2m_{N_+}}, -q^{2\beta + 2n_1}, \dots, -q^{2\beta + 2n_{N_-}}\}$$

To any irreducible π one can associate a 'generalized shape' S_{π} .

Based on Kirillov's orbit method, we make the following conjecture.

Conjecture

Let $\widehat{H}_q(N) = \{irreducible *-representations of \mathcal{O}_q(H(N))\}/\cong$. Then the following is a well-defined bijection:

$$\widehat{H}_q(N) \to \Lambda_q \times_{\operatorname{Sign}} \mathcal{S}, \quad \pi \mapsto (\lambda_{\pi}, \mathcal{S}_{\pi}).$$